Extensions 1→N→G→Q→1 with N=C5xD12 and Q=C22

Direct product G=NxQ with N=C5xD12 and Q=C22
dρLabelID
C2xC10xD12240C2xC10xD12480,1152

Semidirect products G=N:Q with N=C5xD12 and Q=C22
extensionφ:Q→Out NdρLabelID
(C5xD12):1C22 = D5xD4:S3φ: C22/C1C22 ⊆ Out C5xD121208+(C5xD12):1C2^2480,553
(C5xD12):2C22 = S3xD4:D5φ: C22/C1C22 ⊆ Out C5xD121208+(C5xD12):2C2^2480,555
(C5xD12):3C22 = D15:D8φ: C22/C1C22 ⊆ Out C5xD121208+(C5xD12):3C2^2480,557
(C5xD12):4C22 = D12:10D10φ: C22/C1C22 ⊆ Out C5xD121208-(C5xD12):4C2^2480,565
(C5xD12):5C22 = D12:5D10φ: C22/C1C22 ⊆ Out C5xD121208+(C5xD12):5C2^2480,576
(C5xD12):6C22 = D12:D10φ: C22/C1C22 ⊆ Out C5xD121208+(C5xD12):6C2^2480,580
(C5xD12):7C22 = S3xD4xD5φ: C22/C1C22 ⊆ Out C5xD12608+(C5xD12):7C2^2480,1097
(C5xD12):8C22 = S3xD4:2D5φ: C22/C1C22 ⊆ Out C5xD121208-(C5xD12):8C2^2480,1099
(C5xD12):9C22 = D20:13D6φ: C22/C1C22 ⊆ Out C5xD121208-(C5xD12):9C2^2480,1101
(C5xD12):10C22 = D12:14D10φ: C22/C1C22 ⊆ Out C5xD121208+(C5xD12):10C2^2480,1103
(C5xD12):11C22 = D5xQ8:3S3φ: C22/C1C22 ⊆ Out C5xD121208+(C5xD12):11C2^2480,1108
(C5xD12):12C22 = D20:16D6φ: C22/C1C22 ⊆ Out C5xD121208-(C5xD12):12C2^2480,1110
(C5xD12):13C22 = D20:17D6φ: C22/C1C22 ⊆ Out C5xD121208+(C5xD12):13C2^2480,1111
(C5xD12):14C22 = D5xD24φ: C22/C1C22 ⊆ Out C5xD121204+(C5xD12):14C2^2480,324
(C5xD12):15C22 = D24:D5φ: C22/C1C22 ⊆ Out C5xD121204(C5xD12):15C2^2480,326
(C5xD12):16C22 = C40:5D6φ: C22/C1C22 ⊆ Out C5xD121204(C5xD12):16C2^2480,332
(C5xD12):17C22 = D24:6D5φ: C22/C1C22 ⊆ Out C5xD121204(C5xD12):17C2^2480,333
(C5xD12):18C22 = C5xS3xD8φ: C22/C1C22 ⊆ Out C5xD121204(C5xD12):18C2^2480,789
(C5xD12):19C22 = C5xQ8:3D6φ: C22/C1C22 ⊆ Out C5xD121204(C5xD12):19C2^2480,793
(C5xD12):20C22 = C2xC5:D24φ: C22/C2C2 ⊆ Out C5xD12240(C5xD12):20C2^2480,378
(C5xD12):21C22 = C60.38D4φ: C22/C2C2 ⊆ Out C5xD121204+(C5xD12):21C2^2480,381
(C5xD12):22C22 = C2xD12:5D5φ: C22/C2C2 ⊆ Out C5xD12240(C5xD12):22C2^2480,1084
(C5xD12):23C22 = C2xD5xD12φ: C22/C2C2 ⊆ Out C5xD12120(C5xD12):23C2^2480,1087
(C5xD12):24C22 = D5xC4oD12φ: C22/C2C2 ⊆ Out C5xD121204(C5xD12):24C2^2480,1090
(C5xD12):25C22 = D20:26D6φ: C22/C2C2 ⊆ Out C5xD121204(C5xD12):25C2^2480,1094
(C5xD12):26C22 = D20:29D6φ: C22/C2C2 ⊆ Out C5xD121204+(C5xD12):26C2^2480,1095
(C5xD12):27C22 = C2xC15:D8φ: C22/C2C2 ⊆ Out C5xD12240(C5xD12):27C2^2480,372
(C5xD12):28C22 = C60.36D4φ: C22/C2C2 ⊆ Out C5xD121204(C5xD12):28C2^2480,374
(C5xD12):29C22 = C2xD12:D5φ: C22/C2C2 ⊆ Out C5xD12240(C5xD12):29C2^2480,1079
(C5xD12):30C22 = C2xC20:D6φ: C22/C2C2 ⊆ Out C5xD12120(C5xD12):30C2^2480,1089
(C5xD12):31C22 = D20:24D6φ: C22/C2C2 ⊆ Out C5xD121204(C5xD12):31C2^2480,1092
(C5xD12):32C22 = D20:25D6φ: C22/C2C2 ⊆ Out C5xD121204(C5xD12):32C2^2480,1093
(C5xD12):33C22 = C10xD24φ: C22/C2C2 ⊆ Out C5xD12240(C5xD12):33C2^2480,782
(C5xD12):34C22 = C5xC8:D6φ: C22/C2C2 ⊆ Out C5xD121204(C5xD12):34C2^2480,787
(C5xD12):35C22 = C10xD4:S3φ: C22/C2C2 ⊆ Out C5xD12240(C5xD12):35C2^2480,810
(C5xD12):36C22 = C5xD12:6C22φ: C22/C2C2 ⊆ Out C5xD121204(C5xD12):36C2^2480,811
(C5xD12):37C22 = S3xD4xC10φ: C22/C2C2 ⊆ Out C5xD12120(C5xD12):37C2^2480,1154
(C5xD12):38C22 = C5xD4:6D6φ: C22/C2C2 ⊆ Out C5xD121204(C5xD12):38C2^2480,1156
(C5xD12):39C22 = C10xQ8:3S3φ: C22/C2C2 ⊆ Out C5xD12240(C5xD12):39C2^2480,1158
(C5xD12):40C22 = C5xS3xC4oD4φ: C22/C2C2 ⊆ Out C5xD121204(C5xD12):40C2^2480,1160
(C5xD12):41C22 = C5xD4oD12φ: C22/C2C2 ⊆ Out C5xD121204(C5xD12):41C2^2480,1161
(C5xD12):42C22 = C10xC4oD12φ: trivial image240(C5xD12):42C2^2480,1153

Non-split extensions G=N.Q with N=C5xD12 and Q=C22
extensionφ:Q→Out NdρLabelID
(C5xD12).1C22 = Dic10:3D6φ: C22/C1C22 ⊆ Out C5xD121208+(C5xD12).1C2^2480,554
(C5xD12).2C22 = D30.8D4φ: C22/C1C22 ⊆ Out C5xD121208-(C5xD12).2C2^2480,558
(C5xD12).3C22 = S3xD4.D5φ: C22/C1C22 ⊆ Out C5xD121208-(C5xD12).3C2^2480,561
(C5xD12).4C22 = D12.24D10φ: C22/C1C22 ⊆ Out C5xD122408-(C5xD12).4C2^2480,566
(C5xD12).5C22 = D20:10D6φ: C22/C1C22 ⊆ Out C5xD121208-(C5xD12).5C2^2480,570
(C5xD12).6C22 = D12.9D10φ: C22/C1C22 ⊆ Out C5xD121208+(C5xD12).6C2^2480,572
(C5xD12).7C22 = D30.11D4φ: C22/C1C22 ⊆ Out C5xD122408-(C5xD12).7C2^2480,575
(C5xD12).8C22 = D5xQ8:2S3φ: C22/C1C22 ⊆ Out C5xD121208+(C5xD12).8C2^2480,577
(C5xD12).9C22 = D20:D6φ: C22/C1C22 ⊆ Out C5xD121208+(C5xD12).9C2^2480,578
(C5xD12).10C22 = D15:SD16φ: C22/C1C22 ⊆ Out C5xD121208-(C5xD12).10C2^2480,581
(C5xD12).11C22 = D60:C22φ: C22/C1C22 ⊆ Out C5xD121208+(C5xD12).11C2^2480,582
(C5xD12).12C22 = Dic10.26D6φ: C22/C1C22 ⊆ Out C5xD122408-(C5xD12).12C2^2480,586
(C5xD12).13C22 = D12.27D10φ: C22/C1C22 ⊆ Out C5xD122408-(C5xD12).13C2^2480,589
(C5xD12).14C22 = D20.14D6φ: C22/C1C22 ⊆ Out C5xD122408-(C5xD12).14C2^2480,590
(C5xD12).15C22 = D20.27D6φ: C22/C1C22 ⊆ Out C5xD122408-(C5xD12).15C2^2480,593
(C5xD12).16C22 = Dic10.27D6φ: C22/C1C22 ⊆ Out C5xD122408+(C5xD12).16C2^2480,595
(C5xD12).17C22 = D12.D10φ: C22/C1C22 ⊆ Out C5xD122408+(C5xD12).17C2^2480,599
(C5xD12).18C22 = D30.44D4φ: C22/C1C22 ⊆ Out C5xD122408-(C5xD12).18C2^2480,600
(C5xD12).19C22 = D12.29D10φ: C22/C1C22 ⊆ Out C5xD122408-(C5xD12).19C2^2480,1106
(C5xD12).20C22 = D5xC24:C2φ: C22/C1C22 ⊆ Out C5xD121204(C5xD12).20C2^2480,323
(C5xD12).21C22 = C24:D10φ: C22/C1C22 ⊆ Out C5xD121204+(C5xD12).21C2^2480,325
(C5xD12).22C22 = Dic60:C2φ: C22/C1C22 ⊆ Out C5xD122404-(C5xD12).22C2^2480,336
(C5xD12).23C22 = C40.31D6φ: C22/C1C22 ⊆ Out C5xD122404(C5xD12).23C2^2480,345
(C5xD12).24C22 = D24:7D5φ: C22/C1C22 ⊆ Out C5xD122404-(C5xD12).24C2^2480,346
(C5xD12).25C22 = C40:14D6φ: C22/C1C22 ⊆ Out C5xD121204(C5xD12).25C2^2480,331
(C5xD12).26C22 = C40:8D6φ: C22/C1C22 ⊆ Out C5xD121204(C5xD12).26C2^2480,334
(C5xD12).27C22 = Dic6.D10φ: C22/C1C22 ⊆ Out C5xD122404(C5xD12).27C2^2480,352
(C5xD12).28C22 = D24:5D5φ: C22/C1C22 ⊆ Out C5xD122404(C5xD12).28C2^2480,355
(C5xD12).29C22 = D30.4D4φ: C22/C1C22 ⊆ Out C5xD122404(C5xD12).29C2^2480,356
(C5xD12).30C22 = C5xD8:S3φ: C22/C1C22 ⊆ Out C5xD121204(C5xD12).30C2^2480,790
(C5xD12).31C22 = C5xS3xSD16φ: C22/C1C22 ⊆ Out C5xD121204(C5xD12).31C2^2480,792
(C5xD12).32C22 = C5xQ8.7D6φ: C22/C1C22 ⊆ Out C5xD122404(C5xD12).32C2^2480,795
(C5xD12).33C22 = C5xQ16:S3φ: C22/C1C22 ⊆ Out C5xD122404(C5xD12).33C2^2480,797
(C5xD12).34C22 = C5xD24:C2φ: C22/C1C22 ⊆ Out C5xD122404(C5xD12).34C2^2480,798
(C5xD12).35C22 = C20.60D12φ: C22/C2C2 ⊆ Out C5xD122404(C5xD12).35C2^2480,379
(C5xD12).36C22 = D60:36C22φ: C22/C2C2 ⊆ Out C5xD121204(C5xD12).36C2^2480,380
(C5xD12).37C22 = C2xD12.D5φ: C22/C2C2 ⊆ Out C5xD12240(C5xD12).37C2^2480,392
(C5xD12).38C22 = D12.33D10φ: C22/C2C2 ⊆ Out C5xD122404-(C5xD12).38C2^2480,398
(C5xD12).39C22 = D20.39D6φ: C22/C2C2 ⊆ Out C5xD122404-(C5xD12).39C2^2480,1077
(C5xD12).40C22 = D20.34D6φ: C22/C2C2 ⊆ Out C5xD122404(C5xD12).40C2^2480,373
(C5xD12).41C22 = D20:21D6φ: C22/C2C2 ⊆ Out C5xD121204(C5xD12).41C2^2480,375
(C5xD12).42C22 = C2xC20.D6φ: C22/C2C2 ⊆ Out C5xD12240(C5xD12).42C2^2480,384
(C5xD12).43C22 = D12.37D10φ: C22/C2C2 ⊆ Out C5xD122404(C5xD12).43C2^2480,385
(C5xD12).44C22 = C30.C24φ: C22/C2C2 ⊆ Out C5xD122404(C5xD12).44C2^2480,1080
(C5xD12).45C22 = C10xC24:C2φ: C22/C2C2 ⊆ Out C5xD12240(C5xD12).45C2^2480,781
(C5xD12).46C22 = C5xC4oD24φ: C22/C2C2 ⊆ Out C5xD122402(C5xD12).46C2^2480,783
(C5xD12).47C22 = C5xC8.D6φ: C22/C2C2 ⊆ Out C5xD122404(C5xD12).47C2^2480,788
(C5xD12).48C22 = C10xQ8:2S3φ: C22/C2C2 ⊆ Out C5xD12240(C5xD12).48C2^2480,820
(C5xD12).49C22 = C5xQ8.11D6φ: C22/C2C2 ⊆ Out C5xD122404(C5xD12).49C2^2480,821
(C5xD12).50C22 = C5xD4:D6φ: C22/C2C2 ⊆ Out C5xD121204(C5xD12).50C2^2480,828
(C5xD12).51C22 = C5xQ8.13D6φ: C22/C2C2 ⊆ Out C5xD122404(C5xD12).51C2^2480,829
(C5xD12).52C22 = C5xQ8.15D6φ: C22/C2C2 ⊆ Out C5xD122404(C5xD12).52C2^2480,1159
(C5xD12).53C22 = C5xQ8oD12φ: trivial image2404(C5xD12).53C2^2480,1162

׿
x
:
Z
F
o
wr
Q
<